Startsida
Hjälp
Sök i LIBRIS databas

     

 

Sökning: onr:22166851 > Discrete velocity m...

Discrete velocity models for multicomponent mixtures and polyatomic molecules without nonphysical collision invariants and shock profiles [Elektronisk resurs]

Bernhoff, Niclas 1971- (författare)
30th International Symposium on Rarefied Gas Dynamics, 10-15 July 2016, Victoria, BC, Canada 
Karlstads universitet Fakulteten för hälsa, natur- och teknikvetenskap (from 2013) (utgivare)
Kinetisk teori (medarbetare)
American Institute of Physics (AIP) 2016
Engelska.
Serie: AIP Conference Proceedings 0094-243X
Ingår i: 30th International Symposium on Rarefied Gas Dynamics: RGD 30. ; 040005-1-040005-8
Läs hela texten
Läs hela texten
Läs hela texten
Läs hela texten
  • E-bok
Sammanfattning Ämnesord
Stäng  
  • An important aspect of constructing discrete velocity models (DVMs) for the Boltzmann equation is to obtain the right number of collision invariants. It is a well-known fact that, in difference to in the continuous case, DVMs can have extra collision invariants, so called spurious collision invariants, in plus to the physical ones. A DVM with only physical collision invariants, and so without spurious ones, is called normal. The construction of such normal DVMs has been studied a lot in the literature for single species as well as for binary mixtures. For binary mixtures also the concept of supernormal DVMs has been introduced by Bobylevand Vinerean. Supernormal DVMs are defined as normal DVMs such that both restrictions to the different species are normal as DVMs for single species. In this presentation we extend the concept of supernormal DVMs to the case of multicomponent mixtures and introduce it for polyatomic molecules. By polyatomic molecules we mean here that each molecule has one of a finite number of different internal energies, which can change, or not, during a collision. We will present some general algorithms for constructing such models, but also give some concrete examples of such constructions. The two different approaches above can be combined to obtain multicomponent mixtures with a finite number of different internal energies, and then be extended in a natural way to chemical reactions. The DVMs are constructed in such a way that we for the shock-wave problem obtain similar structures as for the classical discrete Boltzmann equation (DBE) for one species, and therefore will be able to apply previously obtained results for the DBE. In fact the DBE becomes a system of ordinary dierential equations (dynamical system) and the shock profiles can be seen as heteroclinic orbits connecting two singular points (Maxwellians). The previous results for the DBE then give us the existence of shock profiles for shock speeds close to a typical speed, corresponding to the sound speed in the continuous case. For binary mixtures this extension has already been addressed before by the author. 

Ämnesord

Natural Sciences  (hsv)
Mathematics  (hsv)
Naturvetenskap  (hsv)
Matematik  (hsv)
Matematik  (kau)
Mathematics  (kau)

Indexterm och SAB-rubrik

Boltzmann equation
discrete velocity models
polyatomic molecules
mixtures
chemical reactions
shock profiles
Inställningar Hjälp

Uppgift om bibliotek saknas i LIBRIS

Kontakta ditt bibliotek, eller sök utanför LIBRIS. Se högermenyn.

Sök vidare

Hjälp
Fler titlar av
Bernhoff, Niclas 197 ...
Karlstads universite ...
Kinetisk teori
30th International S ...
Fler titlar om
Natural Sciences
Mathematics
Naturvetenskap
Matematik
Serie
Fler delar
Värdpublikation
Värdpublikation i annat format
30th International S ...

Sök utanför LIBRIS

Hjälp
Om LIBRIS
Sekretess
Hjälp
Fel i posten?
Kontakt
Teknik och format
Sök utifrån
Sökrutor
Plug-ins
Bookmarklet
Anpassa
Textstorlek
Kontrast
Vyer
LIBRIS söktjänster
SwePub
Uppsök

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy