Startsida
Hjälp
Sök i LIBRIS databas

     

 

Sökning: onr:kv84z9dnh8rd119p > A passage to wastew...

A passage to wastewater nutrient recovery units [Elektronisk resurs] Microalgal-Bacterial bioreactors

Anbalagan, Anbarasan, 1988- (författare)
Zambrano, Jesus (preses)
Schwede, Sebastian (preses)
Lindberg, Carl-Fredrik (preses)
Nehrenheim, Emma (preses)
Acién Fernández, Francisco Gabriel (opponent)
ACWA (medarbetare)
Mälardalens högskola Akademin för ekonomi, samhälle och teknik (utgivare)
Publicerad: Västerås : Mälardalen University, 2018
Engelska 66
Serie: Mälardalen University Press Dissertations, 1651-4238 1651-4238 ; 263
Ingår i:
Läs hela texten
Läs hela texten
  • E-bokAvhandling(Diss. (sammanfattning) Mälardalens högskola, 2018)
Sammanfattning Ämnesord
Stäng  
  • In recent years, the microalgal–bacterial process has been considered to be a very attractive engineering solution for wastewater treatment. However, it has not been widely studied in the context of conventional wastewater treatment design under Swedish conditions. The technology holds several advantages: as a CO 2 sink, ability to withstand cold conditions, ability to grow under low light, fast settling without chemical precipitation, and reducing the loss of valuable nutrients (CO 2 , N 2 , N 2 O, PO 4 ). The process also provides the option to be operated either as mainstream (treatment of municipal wastewater) or side stream (treatment of centrate from anaerobic digesters) to reduce the nutrient load of the wastewater. Furthermore, the application is not only limited to wastewater treatment; the biomass can be used to synthesise platform chemicals or biofuels and can be followed by recovery of ammonium and phosphate for use in agriculture. In the present study, the feasibility of applying the process in Swedish temperature and light conditions was investigated by implementing microalgae within the activated sludge process. In this context, the supporting operational and performance indicators (hydraulic retention time (HRT), sludge retention time (SRT) and nutrients removal) were evaluated to support naturally occurring consortia in photo-sequencing and continuous bioreactor configuration. Furthermore, CO 2 uptake and light spectrum-mediated nutrient removal were investigated to reduce the impact on climate and the technical challenges associated with this type of system. The results identified effective retention times of 6 and 4 days (HRT = SRT) under limited lighting to reduce the electrical consumption. From the perspective of nitrogen removal, the process demands effective CO 2 input either in the mainstream or side stream treatment. The incorporation of a vertical absorption column demonstrated effective CO 2 mass transfer to support efficient nitrogen and phosphorus removal as a side stream treatment. However, the investigation of a continuous single-stage process as the mainstream showed a requirement for a lower SRT in comparison to semi-continuous operation due to faster settlability, regardless of inorganic carbon. Furthermore, the process showed an effective reduction of influent phosphorus and organic compounds (i.e. COD/TOC) load in the wastewater as a result of photosynthetic aeration. Most importantly, the operation was stable at the temperature equivalent of wastewater (12 and 13 ˚C), under different lighting (white, and red-blue wavelengths) and retention times (6 and 1.5 d HRT) with complete nitrification. Additionally, the biomass production was stable with faster settling properties without any physiochemical separation. The outcomes of this thesis on microalgal–bacterial nutrient removal demonstrates that (1) photosynthesis-based aeration at existing wastewater conditions under photo-sequential and continuous photobioreactor setup, (2) flocs with rapid settling characteristics at all studied retention times, (3) the possibility of increasing carbon supplementation to achieve higher carbon to nitrogen balance in the photobioreactor, and (4) most importantly, nitrification-based microalgal biomass uptake occurred at all spectral distributions, lower photosynthetic active radiation and existing wastewater conditions. 

Ämnesord

Engineering and Technology  (hsv)
Environmental Biotechnology  (hsv)
Water Treatment  (hsv)
Teknik och teknologier  (hsv)
Miljöbioteknik  (hsv)
Vattenbehandling  (hsv)
Bioremediation  (hsv)
Biosanering  (hsv)
Industrial Biotechnology  (hsv)
Bioprocess Technology  (hsv)
Industriell bioteknik  (hsv)
Bioprocessteknik  (hsv)
Energy- and Environmental Engineering  (mdh)
energi- och miljöteknik  (mdh)

Genre

government publication  (marcgt)

Indexterm och SAB-rubrik

Microalgae
Bacteria
Carbon
Nitrogen
Light
Inställningar Hjälp

Uppgift om bibliotek saknas i LIBRIS

Kontakta ditt bibliotek, eller sök utanför LIBRIS. Se högermenyn.

Om LIBRIS
Sekretess
Hjälp
Fel i posten?
Kontakt
Teknik och format
Sök utifrån
Sökrutor
Plug-ins
Bookmarklet
Anpassa
Textstorlek
Kontrast
Vyer
LIBRIS söktjänster
SwePub
Uppsök

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy