Startsida
Hjälp
Sök i LIBRIS databas

     

 

Sökning: onr:n2kqd2htlkntvj0z > Control over the Cl...

Control over the Cloud : Offloading, Elastic Computing, and Predictive Control [Elektronisk resurs]

Skarin, Per, 1981- (författare)
Lunds universitet (utgivare)
Publicerad: 2021
Publicerad: Lund : Department of Automatic Control, Lund University, 2021-11-23T15:45:47+01:00
Engelska.
Läs hela texten
  • E-bokAvhandling(Diss. Lund : lunds universitet, 2021)
Sammanfattning Ämnesord
Stäng  
  • The thesis studies the use of cloud native software and platforms to implement critical closed loop control. It considers technologies that provide low latency and reliable wireless communication, in terms of edge clouds and massive MIMO, but also approaches industrial IoT and the services of a distributed cloud, as an extension of commercial-of-the-shelf software and systems.First, the thesis defines the cloud control challenge, as control over the cloud and controller offloading. This is followed by a demonstration of closed loop control, using MPC, running on a testbed representing the distributed cloud.The testbed is implemented using an IoT device, clouds, next generation wireless technology, and a distributed execution platform. Platform details are provided and feasibility of the approach is shown. Evaluation includes relocating an on-line MPC to various locations in the distributed cloud. Offloaded control is examined next, through further evaluation of cloud native software and frameworks. This is followed by three controller designs, tailored for use with the cloud. The first controller solves MPC problems in parallel, to implement a variable horizon controller. The second is a hierarchical design, in which rate switching is used to implement constrained control, with a local and a remote mode. The third design focuses on reliability. Here, the MPC problem is extended to include recovery paths that represent a fallback mode. This is used by a control client if it experiences connectivity issues.An implementation is detailed and examined.In the final part of the thesis, the focus is on latency and congestion. A cloud control client can experience long and variable delays, from network and computations, and used services can become overloaded. These problems are approached by using predicted control inputs, dynamically adjusting the control frequency, and using horizontal scaling of the cloud service. Several examples are shown through simulation and on real clouds, including admitting control clients into a cluster that becomes temporarily overloaded. 
  • The thesis studies the use of cloud native software and platforms to implement critical closed loop control. It considers technologies that provide low latency and reliable wireless communication, in terms of edge clouds and massive MIMO, but also approaches industrial IoT and the services of a distributed cloud, as an extension of commercial-of-the-shelf software and systems.First, the thesis defines the cloud control challenge, as control over the cloud and controller offloading. This is followed by a demonstration of closed loop control, using MPC, running on a testbed representing the distributed cloud.The testbed is implemented using an IoT device, clouds, next generation wireless technology, and a distributed execution platform. Platform details are provided and feasibility of the approach is shown. Evaluation includes relocating an on-line MPC to various locations in the distributed cloud. Offloaded control is examined next, through further evaluation of cloud native software and frameworks. This is followed by three controller designs, tailored for use with the cloud. The first controller solves MPC problems in parallel, to implement a variable horizon controller. The second is a hierarchical design, in which rate switching is used to implement constrained control, with a local and a remote mode. The third design focuses on reliability. Here, the MPC problem is extended to include recovery paths that represent a fallback mode. This is used by a control client if it experiences connectivity issues.An implementation is detailed and examined.In the final part of the thesis, the focus is on latency and congestion. A cloud control client can experience long and variable delays, from network and computations, and used services can become overloaded. These problems are approached by using predicted control inputs, dynamically adjusting the control frequency, and using horizontal scaling of the cloud service. Several examples are shown through simulation and on real clouds, including admitting control clients into a cluster that becomes temporarily overloaded. 

Genre

government publication  (marcgt)
Inställningar Hjälp

Titeln finns på 1 bibliotek. 

Bibliotek i södra Sverige (1)

Ange som favorit

Sök vidare

Hjälp
Fler titlar av
Skarin, Per, 1981-
Lunds universitet
Fler titlar i denna genre
government publicati ...
channel record
Fler delar

Sök utanför LIBRIS

Hjälp
Om LIBRIS
Sekretess
Hjälp
Fel i posten?
Kontakt
Teknik och format
Sök utifrån
Sökrutor
Plug-ins
Bookmarklet
Anpassa
Textstorlek
Kontrast
Vyer
LIBRIS söktjänster
SwePub
Uppsök

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy