Startsida
Hjälp
Sök i LIBRIS databas

     

 

Sökning: onr:08hwm5t8xk36zl6d > Data Modeling for O...

Data Modeling for Outlier Detection [Elektronisk resurs]

Abghari, Shahrooz (författare)
Lavesson, Niklas (preses)
Grahn, Håkan (preses)
Boeva, Veselka (preses)
Holst, Anders (opponent)
Blekinge Tekniska Högskola Fakulteten för datavetenskaper (utgivare)
Publicerad: Karlskrona : Blekinge Tekniska Högskola, 2018
Engelska.
Serie: Blekinge Institute of Technology Licentiate Dissertation Series, 1650-2140 1650-2140
Läs hela texten
Läs hela texten
  • E-bokAvhandling(Lic.-avh. (sammanfattning), 2018)
Sammanfattning Ämnesord
Stäng  
  • This thesis explores the data modeling for outlier detection techniques in three different application domains: maritime surveillance, district heating, and online media and sequence datasets. The proposed models are evaluated and validated under different experimental scenarios, taking into account specific characteristics and setups of the different domains. Outlier detection has been studied and applied in many domains. Outliers arise due to different reasons such as fraudulent activities, structural defects, health problems, and mechanical issues. The detection of outliers is a challenging task that can reveal system faults, fraud, and save people's lives. Outlier detection techniques are often domain-specific. The main challenge in outlier detection relates to modeling the normal behavior in order to identify abnormalities. The choice of model is important, i.e., an incorrect choice of data model can lead to poor results. This requires a good understanding and interpretation of the data, the constraints, and the requirements of the problem domain. Outlier detection is largely an unsupervised problem due to unavailability of labeled data and the fact that labeled data is expensive. We have studied and applied a combination of both machine learning and data mining techniques to build data-driven and domain-oriented outlier detection models. We have shown the importance of data preprocessing as well as feature selection in building suitable methods for data modeling. We have taken advantage of both supervised and unsupervised techniques to create hybrid methods. For example, we have proposed a rule-based outlier detection system based on open data for the maritime surveillance domain. Furthermore, we have combined cluster analysis and regression to identify manual changes in the heating systems at the building level. Sequential pattern mining for identifying contextual and collective outliers in online media data have also been exploited. In addition, we have proposed a minimum spanning tree clustering technique for detection of groups of outliers in online media and sequence data. The proposed models have been shown to be capable of explaining the underlying properties of the detected outliers. This can facilitate domain experts in narrowing down the scope of analysis and understanding the reasons of such anomalous behaviors. We have also investigated the reproducibility of the proposed models in similar application domains. 

Ämnesord

Natural Sciences  (hsv)
Computer and Information Sciences  (hsv)
Computer Sciences  (hsv)
Naturvetenskap  (hsv)
Data- och informationsvetenskap  (hsv)
Datavetenskap (datalogi)  (hsv)

Genre

Indexterm och SAB-rubrik

data modeling
cluster analysis
stream data
outlier detection
Inställningar Hjälp

Uppgift om bibliotek saknas i LIBRIS

Kontakta ditt bibliotek, eller sök utanför LIBRIS. Se högermenyn.

Om LIBRIS
Sekretess
Hjälp
Fel i posten?
Kontakt
Teknik och format
Sök utifrån
Sökrutor
Plug-ins
Bookmarklet
Anpassa
Textstorlek
Kontrast
Vyer
LIBRIS söktjänster
SwePub
Uppsök

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy