Startsida
Hjälp
Sök i LIBRIS databas

     

 

Sökning: onr:1bxn5mx7zrrnwcwc > Data-Driven Techniq...

Data-Driven Techniques for Modeling and Analysis of User Behavior [Elektronisk resurs]

Nordahl, Christian, 1991- (författare)
Grahn, Håkan (preses)
Netz, Marie (preses)
Boeva, Veselka (preses)
Blekinge Tekniska Högskola Fakulteten för datavetenskaper (utgivare)
Publicerad: Karlskrona : Blekinge Tekniska Högskola, 2019
Engelska.
Serie: Blekinge Institute of Technology Licentiate Dissertation Series, 1650-2140 1650-2140 ; 15
Ingår i:
Läs hela texten
Läs hela texten
  • E-bokAvhandling(Lic.-avh. (sammanfattning), 2019)
Sammanfattning Ämnesord
Stäng  
  • Our society is becoming more digitalized for each day. Now, we are able to gather data from individual users with higher resolution than ever. With the increased amount of data on an individual user level, we can analyze their behavior. This is of interest in many different domains, for example service providers wanting to improve their service for their customers. If they know how their service is used, they have more insight in how they can improve. But, it also imposes additional difficulties. When we reach the individual user, the irregularities in the regular behavior makes it harder to model the normal behavior. In this thesis, we explore data-driven techniques to model and analyze user behaviors. We aim to evaluate existing as well as develop novel technologies to identify approaches that are suitable for use on an individual user level. We use both supervised and unsupervised learning methods to model the user behavior and evaluate the approaches on real world electricity consumption data. Firstly, we analyze household electricity consumption data and investigate the use of regression to model the household's behavior. We identify consumption trends, how data granularity affects modeling, and we show that regression is a viable approach to model user behavior. Secondly, we use clustering analysis to profile individual households in terms of their electricity consumption. We compare two dissimilarity measures, how they affect the clustering analysis, and we investigate how the produced clustering solutions differ. Thirdly, we propose a sequential clustering algorithm to model evolving user behavior. We evaluate the proposed algorithm on electricity consumption data and show how the produced model can be used to identify and trace changes in the user's behavior. The algorithm is robust to evolving behaviors and handles both dynamic and incremental aspects of streaming data. 

Ämnesord

Natural Sciences  (hsv)
Computer and Information Sciences  (hsv)
Computer Sciences  (hsv)
Naturvetenskap  (hsv)
Data- och informationsvetenskap  (hsv)
Datavetenskap (datalogi)  (hsv)

Genre

government publication  (marcgt)
Hjälp

"Data-Driven Techniques for Modeling and Analysis of User Behavior" finns i 2 utgåvor på 1 språk

Engelska (2)

Engelska (2)

TitelUpplagaÅrMaterialtypHitta
Data-Driven Techniques for Modeling and Analysis of U...2019 Läs hela
Data-driven techniques for modeling and analysis of u...2019 4 bibl.
Om LIBRIS
Sekretess
Hjälp
Fel i posten?
Kontakt
Teknik och format
Sök utifrån
Sökrutor
Plug-ins
Bookmarklet
Anpassa
Textstorlek
Kontrast
Vyer
LIBRIS söktjänster
SwePub
Uppsök

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy